Federated Reinforcement Learning Acceleration Method for Precise Control of Multiple Devices
نویسندگان
چکیده
Nowadays, Reinforcement Learning (RL) is applied to various real-world tasks and attracts much attention in the fields of games, robotics, autonomous driving. It very challenging devices overwhelming directly apply RL environments. Due reality gap simulated environment does not match perfectly scenario additional learning cannot be performed. Therefore, an efficient approach required for find optimal control policy get better efficacy. In this paper, we propose federated reinforcement based on multi agent which applying a new federation policy. The allows agents perform share their experiences with each other e.g., gradient model parameters increase level. Actor-Critic PPO algorithm used four types simulation environments, OpenAI Gym's CartPole, MoutainCar, Acrobot, Pendulum. addition, did real experiments multiple Rotary Inverted Pendulum (RIP) evaluate compare efficiency proposed scheme both
منابع مشابه
Federated Control with Hierarchical Multi-Agent Deep Reinforcement Learning
We present a framework combining hierarchical and multi-agent deep reinforcement learning approaches to solve coordination problems among a multitude of agents using a semi-decentralized model. The framework extends the multi-agent learning setup by introducing a meta-controller that guides the communication between agent pairs, enabling agents to focus on communicating with only one other agen...
متن کاملReinforcement Learning Based PID Control of Wind Energy Conversion Systems
In this paper an adaptive PID controller for Wind Energy Conversion Systems (WECS) has been developed. Theadaptation technique applied to this controller is based on Reinforcement Learning (RL) theory. Nonlinearcharacteristics of wind variations as plant input, wind turbine structure and generator operational behaviordemand for high quality adaptive controller to ensure both robust stability an...
متن کاملReinforcement Learning for Control
Reinforcement learning (RL) offers a principled way to control nonlinear stochastic systems with partly or even fully unknown dynamics. Recent advances in areas such as deep learning and adaptive dynamic programming (ADP) have led to significant inroads in applications from robotics, automotive systems, smart grids, game playing, traffic control, etc. This open track provides a forum of interac...
متن کاملstudy of cohesive devices in the textbook of english for the students of apsychology by rastegarpour
this study investigates the cohesive devices used in the textbook of english for the students of psychology. the research questions and hypotheses in the present study are based on what frequency and distribution of grammatical and lexical cohesive devices are. then, to answer the questions all grammatical and lexical cohesive devices in reading comprehension passages from 6 units of 21units th...
Convergence of reinforcement learning algorithms and acceleration of learning.
The techniques of reinforcement learning have been gaining increasing popularity recently. However, the question of their convergence rate is still open. We consider the problem of choosing the learning steps alpha(n), and their relation with discount gamma and exploration degree epsilon. Appropriate choices of these parameters may drastically influence the convergence rate of the techniques. F...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2021
ISSN: ['2169-3536']
DOI: https://doi.org/10.1109/access.2021.3083087